What’s Going On When Hard Work Seems Impossible?

MagnetMe / Unsplash

Here's an unresolved question in science that might surprise you: why do thinking, planning, and calculating take effort? 

While physical work requires flexing and unflexing muscles, incurring a direct calorie cost, scientists have measured the metabolic costs of hard thinking and found almost no extra calorie consumption compared to the resting brain state [1][2]. So what gives?! Why can mental work be such a chore?

In a 2016 scientific review article, "Dopamine does double duty in motivating cognitive effort," [3] researchers at Washington University in St. Louis present the hypothesis that cognitive effort is simply a matter of opportunity cost: essentially, it’s nature's jury-rigged mechanism to make us leave some mental capacity available to handle survival needs, by making us averse to sinking too much of that brainpower on extended problem-solving or repeatedly fruitless thoughts. Our ancestors may not have figured out how to protect themselves against rising floodwaters if their brains were always occupied testing better ways to weave a basket.

The article proposes an explanation of how the brain strikes a balance between aversion to effort and the competing experience of motivation—dopamine. Dopamine is popularly known as the feel-good chemical released in the brain by things like exercise, our favorite foods, and sex. But it is also a neurotransmitter that scientists have long known to be intricately involved in regulating cognitive effort. Using evidence from fine-grained experiments and advanced brain imaging techniques, the Washington University researchers lay out a theory of how dopamine works to regulate effort and motivation. Knowing how the brain works in this way may help us understand what’s going on when hard work seems impossible, and even how to make it easier.

Dopamine does “double duty” because it serves at least two key functions in the brain: 

  1. In the prefrontal cortex—the logic and planning part of the brain—dopamine directly controls our working memory. 
  2. In the midbrain—where reward and motivation centers are found—dopamine systems encode "reward functions" that tell the brain whether something is or isn't worth thinking about. 

We’ll deal with each of these in order.

Dopamine in the prefrontal cortex—working memory

In the prefrontal cortex, dopamine signalling acts like knobs on a control panel to our working memory. There’s a steady background level of dopamine in this region, called “dopamine tone,” which increases when we need to maintain more information in our working memory, and decreases when it’s time to get rid of some. 

Learn more

This post is for
paying subscribers

Subscribe →

Or, login.

Read this next:

Superorganizers

The Double Life of Productivity’s Most Famous Doctor

YouTuber Ali Abdaal shares how he makes the productivity videos that have netted him 1M subscribers

133 🔒 Sep 24, 2020 by Dan Shipper

Superorganizers

The Fall of Roam

I don’t use Roam anymore. Why?

179 Feb 12, 2022 by Dan Shipper

Superorganizers

How to Make Yourself Into a Learning Machine

Shopify’s Director of Production Engineering explains how reading broadly helps him get to the bottom of things

144 Mar 3, 2020

Divinations

How Power Works in the Writing Industry

A market analysis, Divinations-style

9 🔒 Aug 3, 2022 by Nathan Baschez

Superorganizers

The Unreasonable Effectiveness of 1-1 Learning

How to learn anything 98% better than average

19 🔒 Aug 6, 2022 by Dan Shipper

Thanks for reading Every!

Sign up for our daily email featuring the most interesting thinking (and thinkers) in tech.

Subscribe

Already a subscriber? Login